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Information Systems researchers are often interested in comparing outcomes across different groups of interest, as 
in the case of experimental and quasi-experimental studies. These designs have traditionally been modeled, as we 
show through a review of our literature, by using analysis of variance techniques on observed scores, typically the 
sum or average of all items measuring the dependent variable of interest. These designs, however, can be analyzed 
with structural equation modeling and latent variables (SEM-LV) techniques, which can better accommodate 
measurement error and more complex models than would otherwise be possible using the traditional techniques. 
This research introduces the foundations of the SEM-LV approach for these research designs and highlights these 
advantages, and provides several examples that underscore the flexibility of the latent variable techniques 
discussed here. It also compares the two main alternatives for implementing this approach and discusses the 
advantages and disadvantages of each. 
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I. INTRODUCTION 

Information Systems (IS) researchers are often interested in comparing outcomes across different groups of interest, 
as in the case of experimental and quasi-experimental research designs, the latter lacking random assignment of 
participants to treatments or experimental conditions. Analysis of these designs has traditionally been performed 
using the family of techniques under the general heading of analysis of variance (ANOVA), such as one-way, two-
way with interaction, factorial, repeated measures, ANCOVA when employing a covariate, MANOVA when there are 
multiple dependent variables, MANCOVA when adding covariates to that design, etc. These techniques are well 
established and have long been used; indeed, ANOVA was used for the first time more than ninety years ago. It is 
important to recognize, however, that these techniques are special cases of the general linear model and can be 
subsumed under it. Moreover, the general framework is itself much more flexible and can accommodate more varied 
designs and tests of underlying assumptions, thereby strengthening experimental research. Therefore, this article 
has two main objectives. First, to introduce to the IS community the analysis of these research designs using latent 
variable techniques and to discuss the advantages of using these approaches. To this extent, we seek to provide an 
introduction into the basic mechanisms by which these techniques work and point to the relevant literature for those 
interested in applying these models to collected data. Second, we show how these techniques can be applied to 
research designs commonly used by IS researchers and how to examine those designs using the approaches 
proposed here. 

The main goal of this research is to introduce the use of structural equation modeling with latent variables (hereafter 
SEM-LV for short) for the analysis of research designs that include between-group comparisons with either 
dependent variables measured with error or intervening variables between the between-group indicators and the 
dependent variables in the model (or any combination of the two) to the IS research community. Particular emphasis 
is placed on the integration and comprehensive modeling of manipulation checks as part of the overall research 
model. Though many of the discussions included here are known in the methodological literature, they have still to 
find their way into the work of the majority of IS researchers conducting this kind of studies. In order to achieve these 
objectives, the rest of this article is organized as follows. First, we present a framework that outlines in which 
scenarios either traditional techniques or the ones proposed here are most appropriate and discuss why. Then the 
framework is used to categorize recent IS research on conducting between-group comparisons, which helps 
underscore the existing mismatch between research designs and analytical techniques in the discipline. Third, the 
two alternative approaches to the specification of between-group designs in SEM-LV are discussed, and compared 
to traditional techniques with regards to their expected outcomes. Fourth, more complex designs, drawn from 
contemporary IS research, are used to better show how complexity can be accommodated by the proposed 
techniques. Finally, limitations of those are discussed and a summary of this research, with a list of more advanced 
readings, is provided. 

II. RESEARCH DESIGNS AND ANALYTICAL TECHNIQUES 

Throughout this article we compare SEM-LV techniques to what we call the traditional ANOVA approach, and so a 
definition of the latter is in order here. The family of analyses under the ANOVA heading are quite well established in 
IS research. As we discuss later―and support through a review of IS between-group research―the traditional 
ANOVA approach is commonly accepted as the appropriate way of analyzing research designs, including between-
group comparisons. Some of these studies include Stewart [2006] on the effects of links between websites of 
different organizations on trust on these organizations; Kuechler and Vaishnavi [2006] on the effects the explicit 
inclusion of goal information has on comprehension, decision confidence, and recall; and Jiang and Benbasat [2007] 
on the effects of alternative presentation formats and task complexity on product knowledge and perceived website 
diagnosticity. 

In the traditional two-group design, subjects are assigned to either a treatment or a control group (randomly in an 
experiment and otherwise if in a quasi-experiment), and the independent variable is manipulated only for the 
treatment condition. In a between-group design, the independent variable is either categorical or nominal, 
representing group assignment, and the dependent variables can be directly observable, a multi-item measure 
representing a latent construct, or any combination of the two. When the latter are employed, researchers determine 
whether reliability is appropriate, through the use of Cronbach’s alpha or a similar statistic, and then proceed to test 
for equality of between-group means, through an analysis of variance on the sum of the items collected. Often, some 
form of factor or component analysis is performed prior to statistical testing, and items may be dropped if they fail to 
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load adequately; however, the analysis itself is typically conducted on a sumscore of all the retained items. In more 
sophisticated designs, additional questions serve as “manipulation checks” and verify whether the intended 
manipulation was indeed effective; however, these generally are not modeled in the statistical analysis itself and are 
used only to present evidence as to the adequacy of the manipulation or treatment. Alternatively, ANOVA models 
can be formulated under the multiple regression framework, in which the different treatments are implemented 
through the inclusion of dummy variables that represent the presence or absence of a treatment condition (or sets of 
these variables if there are multiple levels of a treatment). It should be noted, however, that both representations are 
equivalent and produce identical results. Researchers generally prefer the ANOVA formulation for the presentation 
of these analyses. Even if formulated as a regression, however, these models are still focused on the comparison of 
averages between groups of interest. As discussed below, the preceding is an accurate picture of the majority of 
between-group comparisons conducted in IS research, as shown through a review of recent research in the field. 

In order to better illustrate how the proposed modeling approach, based on SEM-LV techniques, differs from current 
practice in the field, we compare between-group research designs across two important dimensions, namely 
whether the dependent variable or variables of interest are deemed to be latent in nature (and thus subject to 
imperfect measurement by one or more manifest indicators) and whether there are one or more intervening 
variables between the manipulation or between-group indicator (for those scenarios where no manipulation has 
been effected) and the dependent variables of interest or any combination of the two scenarios. This framework, 
depicted in Figure 1 below, allows us to make a clear distinction between those scenarios where ANOVA techniques 
(which include all related techniques, such as ANCOVA, MANOVA, or MANCOVA) and SEM-LV techniques, are 
most appropriate. These two dimensions are discussed in more detail below. 

  Intervening variables between manipulation or 
between-groups indicator and ultimate dependent 

variable 

  N Y 

Measurement error in 
any dependent variable 

N 
Quadrant 1: 

ANOVA Techniques 
Quadrant 3: 

SEM-LV 

Y 
Quadrant 2: 

SEM-LV 
Quadrant 4: 

SEM-LV 

  
Figure 1. Categorization of Between-group Research Designs and  

Most Appropriate Statistical Technique 

Measurement Error in Any Dependent Variable 

This dimension of the framework in Figure 1 distinguishes between research designs where the dependent variables 
can be directly measured without error in an objective manner from those in which the manifest variables involved in 
the comparison are taken to be indicators of an unobservable latent variable. Both cases are common in IS 
research. Examples of the former include number of passwords successfully recalled [Zhang, Luo, Akkaladevi, and 
Ziegelmayer, 2009], decision correctness [Heninger, Dennis, and Hilmer, 2006], test and task performance 
[Santhanam, Sasidharan, and Webster, 2008], and decision time and quality [Tan, Teo, and Benbasat, 2010]. In 
other cases, however, dependent variables are measured with one or more imperfect indicators representing an 
underlying latent variable, which is itself the main focus of interest in the comparison. Examples here include 
cognitive and affective involvement [Jiang, Chan, Tan, and Chua, 2010], ease of understanding [Burton-Jones and 
Meso, 2008], trusting beliefs [Kim and Benbasat, 2006], and perceptions of organizational information sharing 
[Arnold, Benford, Hampton, and Sutton, 2010]. 

Whether a research design includes one or more dependent variables that are unobservable in nature and 
measured with imperfect indicators is an important determinant of the most appropriate statistical technique for data 
analysis. When this is the case, SEM-LV techniques are more suitable, largely due to their ability to model each 
individual item―both the portion representing the latent variable of interest and any residual variance due to 
measurement error―separately. Doing so allows researchers to obtain more accurate and unbiased estimates of 
the experimental or between-group effects of interest. In addition to more accurate estimates, SEM-LV results will 
exhibit more statistical power due to the removal of error variance from the denominator of the effect size, thus 
resulting in a larger statistic which, for any given sample size, will result in enhanced power to detect significant 
differences. 

On the other hand, when researchers employ ANOVA to analyze differences across constructs measured with 
multiple items, each of which contains measurement error, a number of tradeoffs are necessary. Most notably, 
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researchers are limited to use sum or average scores over all items as proxies for the latent variable of interest, thus 
implicitly assuming that all indicators represent the construct equally well (which is equivalent to assuming essential 
tau-equivalence as the underlying measurement model [Millsap and Everson, 1991]). In contrast to SEM-LV 
techniques, as just noted, traditional ANOVA techniques have no mechanism for modeling measurement error and 
researchers, therefore, must operate as if all variables were error-free. While it is recognized that this is not the case 
and hence the use of reliability statistics to ascertain the degree to which high levels of measurement error are 
present in the composite, these do not typically figure prominently in the discussion of obtained effects after some 
reliability threshold has been achieved. Finally, because traditional ANOVA techniques cannot take measurement 
error into account, estimates of between-group effects are underestimated, which further limits the statistical power 
of these analyses [Ree and Carretta, 2006]. 

A related issue is more conceptual in nature and has to do with the level at which causal inferences are established. 
In general, theories, particularly those used in IS research, are posited, developed, and tested in terms of constructs 
that are unobservable and that are represented with multiple items which are individually susceptible to error, that is, 
in terms of latent variables. In experimental research, the manipulation is a means of effecting change in the 
predictor construct only in some groups of subjects so that causality in observing changes in the dependent 
construct is strengthened. Under the traditional ANOVA-based approach, on the other hand, theoretical relationships 
are established between observable variables instead of between latent ones that are, in turn, operationalized by 
manifest indicators. In terms of the framework presented in Figure 1, commonly used ANOVA-based techniques are 
appropriate solely when the research designs include only dependent variables measured without error and will 
produce biased results otherwise, due to not taking into account measurement error and differential item reliabilities, 
as discussed earlier. 

Intervening Variables 

This second dimension of the framework shown in Figure 1 considers whether the research design under 
consideration includes intervening variables between the manipulation or between-group indicator and the ultimate 
dependent variables of interest. These may arise due to the inclusion of a manipulated variable or state, represented 
by manipulation checks, or due to a research design that includes more than one stage in a causal chain (that is, a 
system of mediating and dependent variables), or any combination of the two. In both cases, and even if the ultimate 
dependent variable is not latent in nature, SEM-LV techniques are most appropriate for analysis. In addition, there 
are a number of benefits associated with employing these techniques in the more sophisticated tests that can be 
conducted and in better distinguishing between the effects of the manipulation on the intervening variable and the 
effect of this variable on others in the research model. 

In the first scenario above, a researcher introduces a manipulation, by means of assignment to a treatment group, to 
a group of participants in which said manipulation is intended to affect some underlying conceptual variable that is 
not directly observable―the hypothesis under consideration would be that the manipulation would influence the 
dependent variable of interest by means of impacting this unobservable intervening variable. In this case, 
manipulation checks are employed to verify that the manipulations have indeed been successful in achieving the 
desired effects on the intervening variable or psychological state. The rationale for their value lies in providing 
evidence that a change was effected in the subject such that observed effects in the dependent variable can be 
attributed to the manipulation or treatment, thus allowing for a stronger inference of causality. 

When traditional techniques are employed researchers can only analyze whether the manipulation checks are 
themselves reliable and the extent to which they differ by treatment or manipulation. In contrast, SEM-LV allows for 
the inclusion and modeling of manipulation checks together with the manipulation and ultimate dependent variable of 
interest. The key issue here is how those manipulation checks should be included in the model, which requires 
researchers to consider what those checks are actually representing. To the extent that the value of including 
manipulation checks in a research design lies in showing that the manipulation successfully affected the intended 
target, it seems reasonable to include manipulation checks as indicators of the unobservable state that is the object 
of the manipulation. A sample design is shown in Figure 2 and discussed next. Note, however, that while the 
ultimate dependent variable of interest here is depicted as latent, the same logic would apply if it were directly 
observable. 

In this context, a manipulation or intervention is said to have an effect on some psychological state or understanding 
in the subject, which, in turn, influences some dependent variable of interest. SEM-LV makes it possible to include 
manipulation checks in a comprehensive causal model, as well as require the researcher to make explicit (a) the 
assumptions underlying the research model and (b) how the effects are causally transmitted from the manipulation 
to the dependent variable of interest. In Figure 2 above, the independent dummy variable X represents the 
assignment to either the treatment or control group―the manipulation. In turn, this is expected to cause an effect 
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Figure 2. Causal Model Relating an Independent Variable and  
Manipulation Checks to a Single Dependent Variable 

on an intervening and unobservable variable η1, represented by two manifest indicators, which are what would 
traditionally be considered manipulation checks. The effect of X on η1 is measured by the regression coefficient γ. 
There are a number of advantages in this approach. 

First, SEM-LV takes measurement error into account not only for the dependent variable of interest but also for the 
manipulation checks―the advantages of this have been discussed in the preceding section. Second, researchers 
are thus able to gauge the effectiveness of the manipulation by means of the γ coefficient, which represents the 
impact of the manipulation or treatment on the intervening variable of interest. The second regression coefficient, β, 
depicts the effect of the manipulated state η1 on η2. Thus, the overall impact of the manipulation or group 
assignment is a function of two separate effects: the effectiveness of the manipulation in causing the desired 
psychological state or understanding (γ) and the causal relationship between that state and the dependent variable 
(β). It should be noted that it is the second of these relationships that is of theoretical interest. 

The second scenario where intervening variables may arise, which may occur in conjunction with the one just 
discussed, occurs when researchers propose a research model that includes both between-group comparisons as 
well as extended systems of related variables. Whereas ANOVA and regression techniques can model only one 
stage in a causal chain at a time, SEM-LV allows researchers to model a system of dependent variables in a single 
statistical analysis. Doing so allows researchers to move away from a piecemeal analysis―where the between-
group effects are first tested with ANOVA and then the path model separately with a different technique―and 
conduct an integrated test of the research model, one that can also include tests of relationships between the 
manipulation and constructs other than those hypothesized to be directly affected by the group assignment. Testing 
for the existence of these relationships is important because of the potential presence of bias due to omitted 
variables [Judd and Kenny, 1981; Mauro, 1990], which occurs when a variable that is both a cause of the ultimate 
dependent variable and of the mediating variable is omitted from a regression containing only the mediating and 
outcome variables. In this case, the resulting regression coefficient of the mediator on the ultimate outcome variable 
will be biased, whether upwards or downwards would be a function of the signs of the regression coefficients and 
correlations involved. When conducting separate analyses for each of these relationships, however, this cannot be 
accomplished. Both of these issues can be addressed by modeling these relationships using SEM-LV, which allows 
for all these relationships to be tested in a single, integrated analysis, comprising both measurement and structural 
aspects of the research model under examination. 

Current State of Between-groups IS Research 

Through an application of this framework to extant IS research, we seek to highlight the mismatch between research 
designs and analytical techniques that results from the widespread usage of traditional ANOVA-based techniques 
across all four quadrants of our framework, while we argue that those are most appropriate in only one of 
them―when neither measurement error nor intervening variables are part of the research design. In order to 
ascertain the degree to which this mismatch exists, a review of published research in the 2006–2010 period in a 
group of five premier journals (MIS Quarterly, Information Systems Research, the European Journal of Information 
Systems, the Journal of the Association for Information Systems, and the Journal of Management Information 
Systems) was conducted. A keyword search using relevant terms

1
 was first executed, and the results were manually 

reviewed to identify any examples of between-group comparisons in these journals and time period. 
 

                                                      
1
  Any article containing one of more of the following terms was manually reviewed to determine its relevance to this research: experiment, 

experimental, manipulation, ANOVA, ANCOVA, MANOVA, MANCOVA, random assignment, randomly assigned, manipulation check, and 
control group. 
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Each article was coded along the two dimensions of the framework previously discussed: (1) whether the dependent 
variables were measured with error and (2) whether there were intervening variables in the research design. In this 
last case, a research design where manipulation checks representing an unobservable state or understanding were 
employed was considered to implicitly include an intervening variable―hence the need for manipulation checks to 
verify that the intervening state had been successfully manipulated. There were also cases where a manipulation 
was effected but no checks were deemed necessary, and those instances were coded as not including an 
intervening variable. This most commonly occurred in those research designs were the tasks to be completed by the 
participants were themselves the manipulation, for example, requiring participants to write queries against data 
structures varying in their level of ontological expressiveness to understand the degree to which query correctness, 
time taken to complete the exercise and confidence in the solution are affected as a result [Bowen, O’Farrell, and 
Rhode, 2009]. In this case, the manipulation was not intended to effect a change in an unobservable intervening 
variable, but rather to change the nature of the task itself. Designs where at least one dependent variable was 
measured with error were coded as including measurement error; even if both directly observable and latent 
variables were included in the research design, the presence of at least one of the latter would make SEM-LV 
techniques necessary. 

After obtaining an accurate count of studies in the reviewed period and journals in each cell of the framework, the 
next step involved comparing the statistical techniques employed in the reviewed research against those that the 
framework in Figure 1 would dictate. As traditional ANOVA-based techniques are by far the most commonly used in 
all scenarios, this helps highlight areas where IS research practice can be improved by considering the use of SEM-
LV methods when conducting between-group comparisons. 

  Intervening variables between manipulation or between-groups 
indicator and ultimate dependent variable 

  N Y 

Measurement error in 
any dependent variable 

N 

Quadrant 1: 
ANOVA Techniques 

 

 Analyzed with ANOVA: 29 

 Analyzed with SEM-LV: 0 
 

Quadrant 3: 
SEM-LV 

 

 Analyzed with ANOVA: 2 

 Analyzed with SEM-LV: 0 
 

Y 

Quadrant 2: 
SEM-LV 

 

 Analyzed with ANOVA: 12 

 Analyzed with SEM-LV: 0 
 

Quadrant 4: 
SEM-LV 

 

 Analyzed with ANOVA: 41 

 Analyzed with SEM-LV: 4 
 

 
 

Figure 3. Results of 2006–2010 Review of IS Research 

A total of eighty-eight studies were identified and coded according to the procedure described above. As the results 
included in Figure 3 show, the majority of reviewed studies (fifty-five out of a total of eighty-eight) employed 
analytical techniques that were not the most appropriate, given the characteristics of their research designs. In 
particular, all these used first-generation statistical techniques, with ANOVA, MANOVA, and ANCOVA being the 
most common. As discussed elsewhere, these techniques operate on observable (manifest) variables that are 
presumed to be measured without error. Given that in most of these cases (fifty-three out of fifty-five) the research 
design contained one or more dependent variables that were imperfectly measured, results obtained from these 
analyses would exhibit bias compared to the underlying population values (with the magnitude of this bias being 
dependent on the reliability of the composites employed as dependent variables). In addition, a number of these 
studies (forty-three out of fifty-five) included intervening variables between the manipulation and the dependent 
variables of interest. Single stage techniques, such as ANOVA or regression, cannot model chains of causality in 
that manner. As well, a number of these explicitly modeled a path system of variables that was tested in a separate 
step, where the SEM-LV discussed here can accommodate those in a single, integrated statistical analysis. 

The goal of this review has been to highlight the mismatch that currently exists in the IS literature that employs 
between-group comparisons in terms of research designs and analytical techniques. Though the reviewed journals 
and time period surely represent but a small fraction of all relevant research, these journals are well known for their 
emphasis on methodological rigor. Thus, though we can only speculate about any other non-reviewed literature, the 
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situation is likely to be at least as problematic elsewhere. We believe these results help underscore the importance 
of attending to the choice of most appropriate statistical technique based on the research design proposed. 

In what follows, the proposed techniques are described in more detail in order to foster their usage with IS 
researchers who are interested in between-group comparisons for research designs where these techniques would 
be appropriate―which we would argue encompass the majority of between-group research designs in the IS 
literature. The two basic approaches to specifying these designs within the SEM-LV framework―group code and 
structured means―are first discussed and compared to the traditional approach based on the ANOVA family of 
techniques. In their simplest form, these two alternatives would be appropriate for those research designs where 
dependent variables are measured with error, but no intervening variables (or systems of causal linkages) are 
involved. Then the use of manipulation checks and how to incorporate them into each alternative is covered. At each 
step, we also discuss how results based on ANOVA and SEM-LV analyses would differ, which underscores the 
additional value that can be obtained from the application of SEM-LV to IS research. 

III. BASIC APPROACHES TO SEM-LV ANALYSIS OF BETWEEN-GROUP DESIGNS 

We introduce the two existing approaches to the estimation of mean differences in latent variables using a simple 
two group example. Standard SEM notation will be used throughout this article, and basic knowledge of confirmatory 
factor analysis is assumed. In this scenario, a researcher is interested in making an inference as to whether there is 
a difference in mean levels of a construct η between two populations (or treatments, or experimental manipulations) 
of interest, with this construct being represented by three observed indicators Y1, Y2, and Y3, and the first indicator 
being used to set the scale of the construct by fixing its loading to one. In what we called the traditional approach, 
the researcher would sum the observed scores for all three indicators, calculate a reliability coefficient and, if 
satisfactory, subject the sum of indicators for each group to an analysis of variance. If significant, that would provide 
evidence supporting the existence of mean differences between subjects in the two groups. We describe below how 
this analysis would be conducted using two alternative approaches within the latent variable framework. The 
developments presented below draw heavily from previous work by Hancock [1997, 2003]; for a comprehensive 
treatment, including examples and software code, see also Thompson and Green [2006]. 

Group Code Approach 

The group code approach is a special case of the more general class of MIMIC (Multiple Indicator Multiple Cause) 
models [Muthén, 1989] and is analogous to the representation of ANOVA models as special cases of multiple 
regression. Recall that a one-way ANOVA with two groups can be expressed as a regression model through the use 
of a dummy variable (coded, for instance, 1 for one group and 0 for the other). More generally, several variations of 
analysis of variance models can be expressed as regressions with the creative use of dummy variables to represent 
the presence or absence of multiple treatments, including interactions. For instance, a two-way ANOVA with two 
levels in each factor and an interaction can be expressed as: 

  ABBAY 3210  

In the equation above, A and B are dummy variables taking values of 1 and 0, depending on subject membership on 
the different levels of the two factors involved, and their multiplication represents the interaction. In the group code 
approach introduced here and for the two-group scenario described above, a dummy variable, X, is introduced to the 
latent variable model, which takes values of either 1 or 0 depending on the presence or absence of treatments or 
membership in experimental and control groups. In order to estimate the relationship between group membership 
and the construct of interest, the data from both groups are combined and the construct is regressed on the dummy 
variable, as shown in Figure 4 below. 

Assuming adequate fit to the data, the parameter of interest in the model depicted in Figure 4 is the regression 
coefficient γ, which represents the effect of group membership on mean levels of the construct η. The interpretation 
of this parameter also relies on the expression of between-group models in regression form. In particular, the 
relationship here can be expressed as η = γX + ζ such that for those subjects with group code 1 it equals η = γ + ζ 
and for those with group code 0, η = ζ . Since the expected mean of the residual term is 0, the expected means for 

the two groups are 
̂

 and 0, respectively. Therefore, 
̂

 represents the estimated difference between the two 
construct means. This parameter can be tested for significance using the ratio to its standard error, and the sign 
would indicate the direction of the difference (e.g. which group exhibits higher mean levels of the construct). 
Formally defined effect sizes to assess the magnitude of the estimate are discussed in more detail by Hancock 
[2001, 2003]. For two different approaches to sample size determination and statistical power in SEM-LV, in addition 
to the work just referenced, see Muthén and Muthén [2002] and Saris and Satorra [1993]. 
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Figure 4. Group Code Analysis 

Structured Means Approach 

The majority of work conducted using SEM-LV, including the approach just discussed, is focused on the 
relationships among variables. In these cases, for both measurement and structural models, the means and 
intercepts of these variables, either latent or observed, are irrelevant, since the objective is to reproduce the matrix 
of observed variances and covariances. On the other hand, in the family of statistical procedures based on 
partitioning the variance of observed variables (e.g., ANOVA, ANCOVA, MANOVA, MANCOVA), differences among 
means are of prime importance. As we show here, however, SEM-LV can also be used to address questions about 
means by introducing intercepts as parameters to be modeled, in what has been called structured means models 
[Sörbom, 1978]. These models represent a special case within the more general framework of measurement 
invariance [Vandenberg and Lance, 2000]. 

Unlike the group code approach, where data from both samples are combined, when using structured means 
analysis, data from the different groups are kept separate, thus eliminating the need for a set of coding variables to 
differentiate between groups. Rather, equations involving construct means and indicator intercepts are employed. 
We illustrate this approach in the context of a simple two-group scenario, as was done before. Figure 5 depicts this 
alternative, together with the relevant equations involving construct means and indicator intercepts. Note the 
absence of a coding variable, as well as the equality constraints imposed: all three loadings are equivalent across 
both groups (1 for the first indicator, which sets the scale of the latent variable, and λ2 and λ3 for the second and third 
indicators, respectively), as are the intercepts for the indicators (τ1, τ2 and τ3). 

 

Figure 5. Structured Means Analysis 

 
Structured means analysis makes inferences about groups by using information provided by means of observed 
variables. The underlying assumption is that if mean differences exist in the observed variables, these would be 
caused by mean differences in the latent ones. For this to be the case, however, a number of constraints must be 
imposed on the model in order to ensure that the structural relationship between the latent and observed variables is 
comparable across groups. Specifically, the loading and intercept terms should be constrained to be equivalent. It 
should be noted that these are the same constraints recommended by Vandenberg and Lance [2000] as steps in the 
assessment of measurement invariance. The adequacy of these constrains (i.e., whether they are supported by the 
data), is assessed by means of the significance in the difference between the chi-square statistics for the 
unconstrained and nested models. 
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If fit of the constrained model is not significantly worse (and assuming the overall model fits acceptably well, based 
on commonly used cut-offs, which is a requirement of all SEM-LV analyses), one more constraint is still necessary 
for the identification of the latent means and, consequently, the estimation of differences between them, if any. Since 
the goal is the estimation of the difference between latent means and not the means themselves, one of the latent 
means can be fixed to a set value, which does not affect the magnitude of the difference between them but allows 
for the identification of the mean structure of the model. Customarily, one latent mean is fixed to zero, and a test of 
the difference between the free latent mean and the fixed one is accomplished by the significance of the ratio 
between the estimate of the free mean and its standard error which, if standard statistical assumptions are met, is 
normally distributed. Alternatively, researchers could compare the significance of constraining both latent means to 
be equal compared to a model with a free latent mean. 

Comparison Between SEM-LV Approaches and with ANOVA Techniques 

Each of the two approaches has advantages and disadvantages and associated underlying assumptions [Hancock, 
1997]. In general, structured means analysis is more complex, requiring a larger sample and the estimation of more 
parameters than the group code approach. The apparent simplicity of the latter, however, comes at the cost of 
making a number of simplifying assumptions and using constraints. On the other hand, these assumptions are made 
explicit when using structured means and their adequacy can be empirically tested. 

The primary assumption underlying the group code approach is that the same measurement model applies to all 
groups included in the analysis. This is necessary since data are combined and a single model is tested, where 
dummy variables are used to code the differential effects of belonging to one group or another (note that 
researchers using ANOVA are implicitly making this assumption as well). In the case of structured means analysis, 
each group is modeled separately, and the assumption that measurement invariance holds can be tested. The 
invariance requirement necessary for the group code approach includes all sources of covariation (loadings, 
construct variance, error variances), in effect amounting to the assumption of equal variance/covariance matrices 
across groups. Some of these restrictions can be relaxed in the structured means model, although the sequence of 
increasingly more constrained tests of invariance proposed by Vandenberg and Lance [2000] does require full 
configural, metric (e.g., loadings), and scalar (e.g., intercepts) invariance before latent means can be compared. 
Given a sufficient sample size, there is no reason to prefer one alternative to the other. When constraints on the 
research setting do not make this possible, the group code approach allows researchers to limit the number of 
subjects required to obtain estimates, albeit at the expense of not being able to explicitly test the adequacy of the 
invariance assumptions underlying these techniques (on the other hand, if a model using the group code approach 
shows no significant misfit, this can be interpreted as validation of these assumptions). 

In addition, given the lack of a direct path from the group code variable to the manifest indicators, the group code 
approach does not allow for differences in observed means due to group membership, which in effect implies that 
any individual item variation in means is due to a difference in the underlying latent variable―that is, an assumption 
of intercept invariance [Vandenberg and Lance, 2000]. In structured means analysis, this assumption is made 
explicit through the use of equality constrains on the intercepts of individual items. The assumption would also be 
subject to empirical testing. 

Therefore, both approaches make assumptions about invariance, such that subjects with the same levels of the 
latent value would display the same values in the observed indicators. They differ, however, in the extent to which 
those assumptions are made explicit and subject to testing. Both approaches, on the other hand, are capable of 
accommodating specific violations of invariance. For example, a direct path from the group code variable to a 
specific indicator amounts to releasing intercept invariance for that specific item, which can also be accomplished 
through the removal of the equality of means constraint for that item in structured means analysis. The group code 
approach, however, cannot accommodate differential loadings. It should be noted that (a) which invariance 
assumptions are required for making inferences in different scenarios and (b) whether those can be made when 
invariance needs to be relaxed, are somewhat contested issues. The interested reader is referred to the work of 
Vandenberg [2002] and Vandenberg and Lance [2000] for a thorough treatment review, and also Byrne, Shavelson, 
and Muthén [1989] and Cole, Maxwell, Arvey, and Salas [1993] for discussions of partial measurement invariance. 

To the extent that research designs call for latent dependent variables that are imperfectly measured by one or more 
manifest indicators, analysis of those designs using the traditional ANOVA-based techniques―which is largely the 
case in contemporary IS research practice, as previously discussed―will lead to estimates that are biased when 
compared to the population values of the corresponding parameters. This occurs because first-generation statistical 
techniques such as ANOVA assume the dependent variables are measured without error. We show this by means 
of two simple examples. Consider a two-group research design with a single dependent variable which is latent and 
measured with four manifest indicators―structurally similar to the models shown in Figures 4 and 5. The latent 
mean is 0 in one group and 0.5 in the other, with the variance equal to 1 in both groups―a medium effect size as d 
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= 0.5 [Cohen, 1988]. In this first example, we assume equal loadings across all indicators and between groups of 
0.7, which leads to indicator means of 0 (latent mean of 0 multiplied by a loading of 0.7) for one group and 0.35 for 
the other (latent mean of 0.5 multiplied by a loading of 0.7). Error variances for the manifest indicators are set at 
0.51, which gives each indicator unit variance. 

Through these examples we work with population values and assume equal group sizes to leave aside the effects of 
sampling variability and focus on the effects that analysis with one technique or the other has on the results of 
interest. In the case of SEM-LV specifying the scenario above correctly will yield unbiased estimates, and thus 
researchers will obtain an accurate result that reflects the underlying medium-sized between-groups effect of d = 
0.5. When analyzed using the traditional approach, the four indicators would be summed to obtain a single estimate 
of the dependent variable. The composite reliability for the sumscore would be 0.79, which would be considered 
acceptable in light of the commonly used cutoff of 0.70. The variance of the sumscores in both groups would be 9.88 
(the sum of all the elements in the covariance matrix of the four indicators, which has 1 in the diagonals and 0.72 or 
0.49 in the off-diagonal elements), which results in a standard deviation of 3.143. The sumscore means would be 0 
in one group and 1.4 (0.35  4 indicators) in the other. 

In this case, the estimate of d for the differences between sumscores would be 0.445 (or 1.4/3.143), which is 
different from the underlying population difference of 0.5 by more than 10 percent. The difference between the 
population difference and estimated difference by traditional means varies with the reliability of the indicators (for 
example, had the indicators been less reliable at 0.50 loadings, the estimated d would have been 0.378, almost 25 
percent off the population value). The simplifying assumption of equal loadings across all indicators in each group 
does not affect our results. Following the same calculations as just performed, a population with loadings of 0.8, 0.7, 
0.6, and 0.5 for the four indicators would have resulted in an estimate of d of 0.433 following the traditional analysis, 
which is biased against the population value of 0.5 as well. Thus, in research designs where no intervening variables 
are involved, but where the dependent variables are measured with error, the use of traditional analytical 
approaches based on the ANOVA family of techniques will result in estimates of between-group differences that are 
biased downward due to the negative effects of measurement error. This is a well-known difference between first 
generation techniques and those based on latent variables; however, current practice in IS research employs 
ANOVA analyses throughout. 

IV. INCORPORATING MANIPULATION CHECKS AND INTERVENING VARIABLES 

This section builds on the two basic approaches to the specification of between-group research designs using SEM-
LV techniques by incorporating intervening variables between the manipulation or between-group indicator and the 
ultimate dependent variables of interest. In what follows, the case of incorporating manipulation checks into a 
comprehensive research model will be discussed, but the same underlying rationale applies to models where a 
system of causal linkages follows the manipulation. The advantages of doing so―allowing for measurement error in 
manipulation checks, representing those in a manner that is more consistent with the notion of a manipulated 
intervening variable or state, and better distinguishing between manipulation strength and other theoretical 
relationships―have already been discussed. In this section we focus on the specification of these in either of the 
two approaches just presented and on their interpretation, and highlight with examples how these improve upon 
traditional ANOVA techniques. 

Incorporating manipulation checks into the basic designs previously discussed―group code and structured means 
approaches―is straightforward and essentially entails adding a new latent variable that stands between the 
manipulation and the dependent variable of interest, whether latent or observed. Alternative ways of specifying the 
analytical model are shown in Figure 6, where the indicators Y1 and Y2 would be what are commonly known as 
manipulation checks. 

In the models shown in Figure 6a,c, which have been specified using the group code approach, the gamma 
parameter estimates the strength of the manipulation to effect a change on the intervening variable, while the beta 
parameter estimates the relationship of interest. A significant estimate for the gamma parameter would be indicative 
of a successful manipulation (and the magnitude of the estimate an indication of the effect size), whereas a 
significant beta parameter is an indication that there is a relationship between the two latent variables of interest. In 
the group code approach, researchers are making the assumption that the beta parameter is the same across 
groups, which would be theoretically expected: while the manipulation should affect the intervening variable, it 
should not affect the underlying relationship between the latent variables. 

In the structured means approach, as in Figure 6b,d, the effects of the manipulation would be observed by 
comparing the latent means of the independent variable across groups, subject to all the required measurement 
invariance tests necessary to conduct such a test [Vandenberg and Lance, 2000]. Then, the gamma parameter 
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Figure 6a. Manifest Dependent Variable 
and Manipulation (Group Code) 

Figure 6c. Latent Dependent Variable and 
Manipulation (Group Code) 

 

 

Figure 6b. Manifest Dependent Variable 
and Manipulation (Structured Means) 

Figure 6d. Latent Dependent Variable and 
Manipulation (Structured Means) 

 
relating the independent and dependent variables would estimate the theoretical relationship of interest between 
them. By using structured means to conduct the analyses, researchers can verify that the relationship between the 
two latent variables is indeed the same across groups. It should be noted that both the group code and structured 
means approaches work similarly, regardless of the nature of the dependent variable―observed or latent. 

We now show how the traditional ANOVA analyses confound the strength of the manipulation and the theoretical 
relationship of interest between latent variables into a single estimate. We do so by means of two examples, the first 
with a directly observable dependent variable, which helps highlights the limitations of ANOVA with regards to 
distinguishing between manipulation effects and the causal relationship between variables without involving error in 
the dependent variable. In the second example, both occurrences are shown, thus directly comparing the proposed 
SEM-LV techniques with ANOVA-based ones in what is the most common type of research design in contemporary 
IS research. 

Consider a two-group experimental design with one intervening latent variable, which is the object of the 
manipulation, and a single dependent variable that is directly observable―that is, measured without error. The 
effectiveness of the manipulation is assessed by means of two items. This case is similar in structure to the ones 
shown in Figure 6a,b. A medium effect size (e.g., Cohen’s d = 0.5) would lead to the means of the independent 
latent variable subject to manipulation to be 0 and 0.5 in each group, with an assumed standard deviation of 1. The 
loadings for the two manipulation checks would be 0.8, which would lead to their intercepts being 0 in one group and 
0.40 (0.5 latent mean in the manipulated group multiplied by a loading of 0.80). Assume that the path coefficient 
between the independent latent variable and the observable dependent variable is 0.4, and that the dependent 
variable has a standard deviation of 1 as well. This would lead to the mean of the dependent variable to be 0 in the 
control group and 0.2 (mean of the independent variable of 0.5 in the manipulated group multiplied by the path 
coefficient of 0.4 relating the two variables) in the experimental group. This example works using population values 
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to further filter out the effects of sampling variability in the results. When correctly specified, an SEM-LV analysis will 
accurately recover the population parameters. The analysis based on the traditional ANOVA approach would work 
as follows. 

First, the effectiveness of the manipulation would be assessed by comparing the means of the manipulation checks 
across the two groups. Even with relatively reliable items, the analysis based on the observed individual scores 
would indicate a d equal to 0.40, which underestimates the strength of the manipulation by 20 percent when 
compared to a population d of 0.50. Most of the time, however, the focus is on whether they are significantly different 
across groups and not on the magnitude of the difference. Next, researchers would compare the means of the 
dependent variable between the two groups, which, being perfectly measured, would lead to an unbiased estimate 
of d = 0.20. When working within the SEM-LV framework, the manipulation effect of d = 0.50 is distinguished from 
the path coefficient of 0.40 relating the two variables of interest; multiplying the d of 0.50 times the path coefficient of 
0.40 leads to the observable difference of d = 0.20 in the dependent variable. Researchers working under the 
ANOVA approach would have observed a manipulation effect of d = 0.40 and an overall effect on the dependent 
variable of 0.20, which would have led them to conclude that the path coefficient relating the two variables should 
equal 0.5 (or 0.2/0.4), which would overestimate the magnitude of the relationship between the two variables, which 
is typically the main estimate of interest (in this case by 25 percent). 

The situation becomes even more dire when the dependent variable is latent in nature, e.g., similar to the models 
shown in Figure 6c,d. Assume the same effects as before, but a latent dependent variable represented by three 
indicators, all with loadings of 0.8 and unit variance (Y3, Y4, and Y5 in Figure 6). The traditional analysis on the 
individual observed manipulation checks would lead researchers to an effect size of d = 0.40 for the manipulation. 
The sumscore of the three manifest indicators of the dependent latent variable would have means of 0 in one group 
and 0.48 (0.2 latent mean in the manipulated group multiplied by a loading of 0.80 and summed over the three 
indicators), with a variance in both groups of 6.84 (standard deviation of 2.615). A comparison of these sumscores 
would lead to a d of 0.1835 (or a difference in means of 0.48 divided by a pooled standard deviation of 2.615), which 
would underestimate the population effect size―as discussed before when considering the effects of measurement 
error when the traditional approach is employed. When estimating the path relating the two latent variables, 
researchers would arrive at an estimate of 0.459 (or 0.1835 divided by 0.4), which again overestimates the 
population coefficient of 0.4. Furthermore, in this scenario―which is the most common one in contemporary IS 
research―researchers working under the traditional approach would be left with estimates for all three coefficients 
of interest (manipulation strength, relationship between variables, and overall effect) that are biased when compared 
to their population values. 

V. MORE COMPLEX EXAMPLES 

The description of the two general approaches to SEM-LV modeling of between-group comparisons above was 
couched in terms of the simplest model possible, the two-level one-way ANOVA, for ease of exposition. This should 
not be taken to mean, however, that the techniques described here can only be applied to simple models. Quite to 
the contrary, many other more sophisticated designs can be analyzed, some of which have been described by 
Mackenzie [2001]. This section shows how to specify more advanced models using the SEM-LV approach. All 
examples shown in this section are structurally similar to recently published IS research in major journals. The goal 
of this section is to show how sample cases from contemporary research practice can be specified using the SEM-
LV approach proposed here in order to further foster its applicability to future studies. 

Two Groups, Multiple Dependent Constructs 

The first scenario shows the case of multiple, correlated dependent constructs, each measured with multiple items, 
compared across two groups of interest. Examples of IS research employing a similar design include Wakefield and 
Whitten [2006], Tiwana and Keil [2009], or Shanks, Tansley, Nuredini, Tobin, and Weber [2008]. This example also 
helps highlight the many advantages of the latent variable approach over the commonly used MANOVA alternative 
for cases with more than one dependent variable. The general approach of running a MANOVA when there is more 
than one dependent variable and following with univariate ANOVA analyses if the test of the MANOVA omnibus 
hypothesis is significant, is quite common in published research. There are a number of issues with this approach, 
however, that makes it less than appropriate in practice. First, when running a MANOVA analysis, each of the 
dependent variables would be represented by the sum of their observed indicators, therefore not accounting for the 
effects of measurement error. Second, the MANOVA procedure works on a linear composite of the observed 
variables, and not on the observed variables themselves; MANOVA creates a composite using the observed scores 
and thus statistical tests are not performed on the same constructs as would be conceptualized in SEM [Hancock, 
2003; Hancock, Lawrence, and Nevitt, 2000]. A significant result in a MANOVA analysis means that a weighted 
combination of the composite variables included in the analysis exhibits mean differences across groups. Third, a 
MANOVA analysis of scenarios when intervening latent variables, such as those affected by a manipulation, need to 
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be included in the research design will result in biased estimates of both the strength of the manipulation as well as 
of the relationship between the manipulated perception and the dependent variables of interest. Finally, MANOVA 
would be more appropriate for evaluating differences in means in an emergent (e.g., formative, where causality 
flows from indicators to constructs, but without including a disturbance term, therefore not dealing with a latent 
variable) rather than a latent (e.g., reflective) variable system [Thompson and Green, 2006]. This is an important but 
not widely known distinction. 

Using the SEM-LV approach, and ignoring for a moment the inclusion of manipulation checks, we can conceptualize 
this research model in a way that is consistent with the use of multiple-indicator measures. We are including here 
three correlated constructs (A, B, and C), each measured with multiple indicators (4, 6, and 3, respectively), but the 
model would be similar for any number of constructs. Following Kano [2000], Figure 7 shows the latent variable 
specification using the group code approach, whereas Figure 8 shows the same research model using the 
structured means alternative (the constraint equations shown in Figure 5 are not included in this section for ease of 
exposition, but can be similarly derived). As discussed before, when all sources of variation are equivalent across 
groups, both specifications are identical and will yield the same results. 
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Figure 7. Two Groups, Multiple Dependent Constructs Group Code Approach 

 
If researchers wanted to include―as they likely should―items to verify that the manipulation had indeed 
successfully effected the intended change in the perceived context in which the participants answered questions 
about the three dependent variables of interest, those could be added to the models shown in Figures 8 and 9 by 
means of incorporating a new latent variable, represented by the three manipulation checks, as an intervening 
variable between the group indicator X and A, B, and C in Figure 7 or as an antecedent to A, B, and C in Figure 8. 
An assessment of the manipulation could then be conducted by assessing the significance of the path from group 
indicator to intervening variable, if using the group code approach, or by comparing the latent means of the 
manipulated independent variable, if using the structured means approach. In both cases, the relationship between 
this variable and the dependent ones of interest (here A, B, and C) would be assessed by analyzing the appropriate 
paths linking pairs of latent variables. 

Two Factors, Interaction, Observed and Latent Dependent Variables 

The next example shows an experiment in which two different design factors are manipulated, with two levels each, 
and participants are randomly assigned to each of the resulting four conditions. The goal of this design is to examine 
both main effects and their interactions on the dependent variables of interest. Of note here is the fact that, while 
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Figure 8. Two Groups, Multiple Dependent Constructs Structured Means Approach 

 
some of those dependent variables may be multi-item constructs, others can be observed variables, with no 
assumption of measurement error (for example, time taken to complete a task). We take advantage of this research 
design to highlight the flexibility of the SEM-LV approaches described here to accommodate, in a single model, both 
observed and latent dependent variables and the analysis of both main effects and interactions in an experimental 
design. For ease of exposition, only one of each type―latent and observed―are discussed here, but the design can 
be extended to the case of more than two dependent variables in a straightforward manner. Also of note in this 
research design is the fact that the manipulations, while expected to affect the dependent variables of interest, are 
not posited to influence an unobservable state or perception in the respondents. In the framework shown at the 
beginning, this study would be classified in Quadrant 2 (measurement error in one or more dependent variables, but 
no intervening or manipulated variable). Recent studies with a similar design include Hong, Thong, and Tam [2005], 
Qiu and Benbasat [2009], or Balijepally, Mahapatra, Nerur, and Price [2009]. 
 
Figures 9 and 10 show how to specify this research model using the group code and structured means approaches. 
Two dependent variables are included, one modeled as a latent variable measured by six items (X) and the other 
modeled as a single observed variable (Z). Note that, for clarity, the covariance between disturbance terms is not 
shown in Figure 9, but would be included in the model to account for sources of covariation other than the 
experimental manipulation. The two experimental factors are labeled A and B. 
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Figure 9. Two Factors, Interaction, Observed, and Latent Dependent Variables 

 
In the group code approach, shown in Figure 9, the main and interaction effects of the experimental treatments are 
depicted by the paths going from the dummy coded variables representing group assignment to both dependent 
variables. As discussed before, the residual terms of the two dependent variables are allowed to correlate to account 
for any relationship between them that is not the product of experimental assignment. If strict independence were 
expected (e.g., the dependent variables should not correlate conditional on group assignment), this could be 
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Figure 10. Two Factors, Interaction, Observed, and Latent Dependent Variables 

tested by estimating the difference in fit from a model with a freely estimated relationship and one where the 
correlation between residuals has been fixed at zero. The same testing logic applies to any of the paths of interest in 
this model. For example, an omnibus test of no overall effects would compare fit between a model with freely 
estimated regression paths and one where all have been fixed to zero. Specific paths of interest (for example, those 
showing the effect of the interaction between the two conditions on each dependent variable) can be tested in a 
similar manner.

2
 

Researchers familiar with the regression formulation of ANOVA models described above will find the testing and 
interpretation of these paths similar in nature. The estimation and testing of interaction effects using the structured 
means approach is more involved and requires the use of more complex cross-group constraints. In order to best 
understand the rationale behind these constraints, a brief review of the workings of a 22 research design is 
necessary. This scenario is treated here in some detail, as testing of interactions is quite common in multi-factor 
experimental designs. Figure 11 shows such an example. 
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Figure 11. 22 Experimental Design 

When employing a 22 design researchers are interested in comparing the means of certain variables of interest for 
each separate group, and whether these are different across groups. In a 22 design there are eight possible 
scenarios for results, ranging from no effects of any kind to interaction effects accompanied by simple main effects 
of each factor. The common practice is to assess the presence of an interaction effect first, and only then the 
presence of simple effects within each factor (if there is an interaction) or main effects of each factor (if there is no 
interaction). In this type of design, there is support for an interaction effect when the difference between the group 
means within each level of a factor varies depending on which level is considered. In terms of the example shown in 
Figure 11, if LALB – LAHB is different from HALB – HAHB, then there is an interaction between the two factors. 
When using the structured means approach (e.g., Jaccard and Wan, 1996) this is accomplished by conducting a test 

                                                      
2
  Researchers often evaluate the significance of a finding by examining the z value associated with a particular path of interest. Recent research 

by Gonzalez and Griffin [2001], however, raises the issue of the sensitivity of standard errors to the choice of indicator fixed for identification 
purposes. The likelihood ratio test, on the other hand, appears immune to this problem and is thus recommended for significance testing. 
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of the significance of constraining the means across these two groups to be identical, after all other necessary 
invariance constraints have been specified. Depending on the significance of this test, either simple or main effects 
would be assessed next. Figure 12 shows the sequence of these tests in terms of the example design shown in 
Figure 11 above. It should be noted that these tables can be easily constructed from the results of the unconstrained 
model where all latent means are allowed to be freely estimated, save for the one that is fixed to zero for 
identification purposes. In this case, all other latent means are expressed as deviations from the one used as a 
reference, but that does not impact the magnitude of the differences between groups themselves. The sequence of 
tests shown in Figure 12 is analogous to that commonly used when analyzing 22 ANOVA models. All these tests 
are performed by including constraints in the model to force the means of the desired groups (or their average, in the 
case of main effects) to be equal, and comparing the resulting fit with that of an unconstrained model (e.g., a chi-
square difference test). 

Interaction:

LALB – LAHB ≠ 

HALB – HAHB

Test for simple 

effects within levels 

of each factor:

1. LALB – LAHB ≠ 0

2. LALB – HALB ≠ 0

3. HALB – HAHB ≠ 0

4. LAHB – HAHB ≠ 0

Test for main effects 

across levels of each 

factor:

1. (LALB+LAHB)/2 ≠ (HALB+HAHB)/2

2. (LALB+HALB)/2 ≠ (LAHB+HAHB)/2

Significant Not Significant

 

Figure 12. Sequence of Tests for a 22 Design 

The latent variable approaches described here can also accommodate extensions of the basic 22 model just 
discussed. Consider, for example, a replication and extension of this scenario in which a researcher is interested in 
examining these effects after accounting for (or controlling) a covariate, measured in this example as a latent 
variable (items not shown for clarity)―this is conceptually similar to ANCOVA or MANCOVA analyses. Figures 13 
and 14 show this extension using the group code and structured means approaches. Two sets of parameters are of 
particular interest in Figure 13, in addition to those already discussed in the more basic model above. First, those 
paths from the latent covariate to the two dependent variables serve to control for the effects of this covariate so that 
the effects of the experimental treatments on the two dependent variables can be more precisely assessed. Second, 
the relationship between the latent covariate (an observed covariate could be easily accommodated as well) and the 
dummy variables representing group assignment provides researchers with a testable assessment of the 
effectiveness of random assignment to experimental groups in controlling for other individual differences. A 
significant correlation between the latent covariate and the dummy variables would indicate there is a significant 
difference on the levels of the covariate between some of the experimental groups, which should be taken into 
account when interpreting the results. 

Because the group code approach assumes complete equivalence between the two groups, the effects of the latent 
covariate on the dependent variables are assumed to be equivalent across groups as well. The structured means 
formulation of this research model allows the testing of this assumption before proceeding with testing for the 
equivalence across means of the dependent variables in the different groups by assessing the effects on fit of a 
cross-groups equivalence constraint on the path from the latent covariate to each dependent variable. The adequacy 
assumption of equivalent variances that is required before this test can be performed (cf. Vandenberg, 2002) can 
also be assessed in a similar manner. Finally, the effectiveness of random assignment can be tested by comparing 
the latent means of the latent covariate across the four experimental groups. As just discussed, finding a significantly 
different mean indicates the presumed control of extraneous variables by random assignment to experimental 
conditions has been compromised. As with any other statistical test, findings of non-significance (which would 
indicate appropriate random assignment) need to be evaluated in light of the statistical power of the test. 

Pre- and Post-test Designs 

The last example shows how to model and analyze the commonly used pre- and post-test experimental design. In 
this scenario, one is interested in understanding the effects of an experimental intervention on a latent variable of  
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Figure 13. Addition of a Latent Covariate Group Code Approach 
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Figure 14. Addition of a Latent Covariate Structured Means Approach 

interest while taking into account the pre-manipulation levels of the same variable in the participant, where the focal 
construct is measured with the same items on both occasions, as would commonly be the case. For ease of 
exposition, only three indicators are included. See Piccoli and Ives [2003] for empirical research employing a similar 
design. 

Figure 15 shows the specification of the research described here through the use of the group-code alternative. The 
figure shows the latent construct of interest represented as a latent variable in both measurement occasions. The 
parameter γ1 represents the effects of the intervention, after controlling for pre-intervention scores, whose effect is 
captured by the coefficient γ2; the parameter ψ captures the relationship, if any, between pre-intervention scores and 
the experimental treatment, allowing researchers to assess whether subjects differed significantly on the pre-  
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Figure 15. Pre- and Post-test Design Group Code Approach 

 
intervention scores and thus the degree of effectiveness of random assignment to experimental conditions. When 
analyzing this research design, researchers assess the significance of the experimental effects through the 
significance of γ1, and the adequacy of random assignment through the significance of ψ. This is equivalent to 
conducting a t-test on the composite pre-test scores across both groups, which is sometimes done to provide 
evidence of adequate random assignment. The latent variable formulation, however, allows for the consideration of 
measurement error in the indicators and thus enhances the power of this test, as already noted. 

The research model depicted in Figure 15 also includes a freed relationship between the residuals of each pair of 
identical items used to measure the construct on both occasions (for ease of exposition, only one relationship is 
shown, between ε1 and ε4). As is well known, the total variance of an indicator can be decomposed into three 
separate elements: (1) common variance, which is shared with other related measures and modeled through the 
inclusion of a path from a latent variable to the indicator, (2) specific variance, which is unique to that particular 
indicator, and (3) random error. The last two components are usually grouped together and modeled as unexplained 
residual variance in common applications of factor analysis. Particularly, cross-sectional designs do not allow for 
each component to be modeled separately [Raffalovich and Bohrnstedt, 1987]. The rationale for allowing the 
correlation between specific pairs of residuals in Figure 15 can be stated as follows. 

Consider the case of indicators Y1 and Y4, which represent the same survey question in the pre- and post-test 
measures. As just noted, the variance of each of these two indicators is a combination of common, specific, and 
random error components. In this particular example, both indicators share a common antecedent in the pre-test 
latent variable. In the case of Y1 this effect is direct, through the loading λ1. In the case of Y4, this effect operates 
indirectly through the regression coefficient relating both latent variables, γ2, and the loading relating the post-test 
measure to Y4, shown as λ4 in Figure 14. The two indicators also share the specific component of their individual 
variance, since they are identical copies of each other, albeit measured on different occasions. If this other shared 
variance is not explicitly modeled, as would be done by allowing the residuals to correlate, the statistical algorithm 
will attempt to fit a model that best accounts for both sources of variance through the only common path between the 
two indicators, just described. 

Since there are several pairs of identical indicators in this research model, but all of them related through the same 
channel, doing so would not only confound the true relationship between the pre- and post-test constructs, but also 
force the shared uniqueness between pairs of indicators to be equal across each pair. This would likely lead to a 
decrease in the fit of the model and may lead researchers to inaccurately conclude that the proposed research 
model does not adequately account for the relationship between the observed indicators. Allowing residuals to 
correlate across each pair of indicators takes into consideration the presence of this relationship between them that 
is not accounted by the structural model, and removes this confounding from the model estimates for both 
parameters of interest and overall fit. 

Figure 16 shows the same research model specified using the structured means alternative (only one group is 
shown for clarity). The preceding discussion on the need to allow for the correlation between pairs of residuals 
equally applies here. In this Figure, γ1 represents the relationship between the pre- and post-test representations of 
the construct. Since the treatment and control groups are modeled separately, other parameters of interest are 
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estimated by comparing pairs of constrained and unconstrained models. In this particular case, testing for the 
equality of latent means between the pre-test measure in both groups serves to assess the effectiveness of random 
assignment, as there should not be any significant differences between the two groups. While the group code 
approach limited the effect of the pre-test construct on its post-test counterpart to be equal across the two groups, 
the structured means approach can empirically test this assumption by analyzing the effects of constraining γ1 to be 
equal across both groups. 
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Figure 16. Pre- and Post-test Design Structured Means Approach 

V. LIMITATIONS OF THE SEM-LV APPROACH 

This section discusses some of the limitations inherent in the techniques discussed thus far. As has been shown 
above, the techniques proposed here are quite flexible and can accommodate the variety of research designs 
employed by IS researchers, and other more complex ones that have yet to become commonplace in the discipline 
(such as, for example, latent growth models). On the other hand, the application of these techniques to actual 
research places sometimes stringent demands on data collection and analysis. Some of those are discussed next. 

Sample Size 

Because of their ability to take measurement error into consideration―which, when not modeled appropriately, 
results in inflated standard errors and reduced power for approaches based on observed variables [Ree and 
Carretta, 2006]―latent variable techniques exhibit more power to detect existing effects at the same sample size 
than the ANOVA family of techniques does. On the other hand, researchers employing latent variable approaches 
must be wary of convergence and stability issues arising from the use of small samples in conjunction with these 
techniques. At the same time, any results based on small samples are more subject to sampling variability and less 
likely to accurately estimate the underlying experimental effect, if any. In addition, smaller samples and observed 
variable approaches compound the limitations of the latter with regards to statistical power. Therefore, at the smaller 
end of the spectrum of sample size, the ANOVA family of techniques can provide a researcher with results, whereas 
latent variable approaches would be hard pressed to do so (unless the research model under examination is very 
simple and only a few parameters are estimated). The downside of choosing this alternative is working with more 
variable samples that are less representative of the underlying population of interest and reduced statistical power 
that is less likely to result in a significant finding. 

Partial Least Squares 

For the purpose of this discussion, there are two important limitations when using PLS to model the type of research 
designs described here. First, PLS is not a latent variable technique [Marcoulides, Chin, and Saunders, 2009]. 
Rather than working with the theoretical constructs of interest that are presumed to underlie observed indicators, 
PLS substitutes those with weighted combinations of the latter. Given that each observed indicator contains both 
common and random error variance, the weighted composites employed by PLS will also contain common and error 
variance, in proportions reflecting the quality of each individual indicator and the weight given to each by the 
algorithm. As a result, PLS does not represent a significant improvement in this regard compared to traditional 
ANOVA techniques, which work on unweighted sums of indicators. Second, it is well-established in the 
measurement invariance literature that comparisons between groups with regards to construct means, such as 
those conducted when employing the structured means alternative discussed before, require the equivalence of 
certain parameters to be tenable before meaningful conclusions can be reached. Doing so, however, is beyond 
current approaches to between-groups comparisons using PLS [Qureshi and Compeau, 2009], which assume the 
necessary invariance requirements to hold. The issue is not minor and speaks directly to the ability of PLS to provide 
meaningful comparisons between groups. Researchers using PLS to estimate the research designs discussed here 
should be mindful of these issues and how these would impact their results. 
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Construct Specification: Reflective and Formative 

All the discussions and examples in this research are limited to reflective specifications of latent variables. Although 
discussions of methodological issues associated with formative specifications of latent variables are becoming more 
common, by and large these assume that the only antecedents to a formatively specified construct are its cause 
indicators―in this sense, formatively specified latent variables can never be an independent variable, by definition. 
An important conceptual issue that needs to be addressed is the nature of the relationship between a formatively 
specified construct and its indicators. As noted by Bollen and Lennox [1991], the set of indicators employed for a 
formatively specified construct should represent a census, and not a sample; all indicators that form the latent 
variable should be included. When a formatively specified latent variable is the subject of an experimental 
manipulation, an additional cause of that latent variable, the experimental manipulation itself, is added to the 
research model. If using the group code approach, is the dummy variable representing group assignment an 
additional cause indicator of the latent variable, and should it be treated as such? The answer, and its implications, 
is not entirely clear. Much still remains to be understood about formative specifications of latent variables. While not 
discarding the possibility of employing formatively specified latent variables in research designs such as the ones 
discussed here, more research is needed into alternative approaches for doing so, and their theoretical and 
statistical implications. 

VI. CONCLUSION AND FURTHER READING 

The goal of this article was to present, in an integrated manner, a comprehensive treatment of the foundations of 
SEM-LV analysis of research designs that include between-group comparisons, as well as to discuss its advantages 
over traditional ANOVA on the sum of observed variables, and to illustrate the potential of latent variables analysis to 
study more complex scenarios. Some technical and analytical details were omitted, where necessary, to maintain 
ease of exposition, but interested readers can refer to the original cited sources. 

The discussion presented here is by no means complete, and there is a large body of methodological literature 
bearing on the issue. Confidence intervals for the difference between means, for example, were not included in this 
introduction. In addition to the expository treatments by Hancock [1997, 2003, 2004], Bagozzi [1977], Bagozzi and Yi 
[1989], and Mackenzie [2001], more technical developments can be found in Hancock [2001], Hancock et al. [2000], 
Cole et al. [1993], Kano [2000], Kühnel [1988], Millsap and Everson [1991], Muthén [1989], Russell, Kahn, Spoth, 
and Altmaier [1998], Sörbom [1978], Ployhart and Oswald [2004], Thompson and Green [2006], Choi, Fan, and 
Hancock [2009], and Mcdonald, Seifert, Lorenzet, Givens, and Jaccard [2002], among others. 

There are a number of advantages associated with SEM-LV that lead to recommending the use of the latent variable 
approach outlined here instead of the traditionally used analysis of observed variables. These are summarized in 
Table 1 below. The only disadvantage associated with SEM has to do with the relatively higher sample size 
requirements that are needed for implementing the latent variable approach, due to the estimation of a higher 
number of parameters, such as loadings and residual variances. This will likely result in an increase in the cost of 
conducting research. Indeed, this type of analysis may not be feasible for populations where participants are either 
difficult or expensive to recruit. On the other hand, given that the analysis of observed variables is biased by 
 

Table 1: Advantages of the SEM-LV Approach over Traditional Methods 
 Ability to include manipulation checks in a comprehensive model, instead of being analyzed separately and ad-hoc 
Explicit representation in the research model of intervening unobservable variables or constructs that effectively 
become the target of manipulation or group assignments 

Accounts for the biasing effects of measurement errors in the dependent variable or variables, manipulation 
checks, and latent covariates, if any 

The effect of the manipulation on the dependent variable can be decomposed into two distinct ones: the 
effectiveness of the manipulation in varying the intervening variable, which also allows for assessing the 
effectiveness of the treatment, and the theoretically interesting effect of the intervening variable on the ultimate 
dependent construct. 

Allows for the differential reliability of the items used to measure the constructs involved; whereas working on a 
sum score assumes equal importance for all items measuring a construct, latent variable modeling allows for the 
possibility of heterogeneous loadings. 

Relationships are modeled and tested between the constructs of a theory and not between their observable 
operationalizations. 

Systems of dependent variables, as well as latent covariates, can be accommodated. 
Assessments of construct validity can be integrated with the main analysis instead of conducted separately through 
exploratory factor analysis. 
Flexibility to accommodate complex models, such as those discussed here. 
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measurement error, it is not very clear to what extent the need for larger samples (to achieve desired power with 
traditional techniques) compensates this downside of the latent variable approach. This is one of many areas that 
remain open for future research to address. 

There are also some instances in which the use of latent variable techniques is not necessary, and these involve 
studies that focus on observed dependent variables that are of interest in their own right, and not because they are 
indicators representing an underlying construct which is the main focus of the study. Examples of these scenarios, 
from published IS research, include the work of Tsai, Egelman, Cranor, and Acquisti [forthcoming], who examined 
the effects of online privacy information on purchasing behavior, comparing mean prices paid (an observed variable 
of interest) by subjects in the different conditions; Shanks et al. [2008], who examined the effects of ontological 
clarity on the time taken to solve a problem under each separate condition; or Keith, Shao, and Steinbart [2009], 
who compared the number of login failures across different approaches to the creation of passphrases.  

The use of latent variables to analyze data from experimental and quasi-experimental research designs, as well as 
more complex models involving the assignment of subjects to groups, random or otherwise, is well-grounded in 
methodological literature and has been extensively studied. Indeed, much of the foundation for this type of analysis 
was developed more than thirty years ago. It has only been recently, however, that this has begun to be applied in 
the organizational and social sciences, and then mostly by researchers who are themselves methodological experts. 
Moreover, this is largely absent in contemporary Information Systems research. It is our hope that this brief, non-
technical, exposition will help with its diffusion into the discipline and improve our research practice. 
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